Prof. Przemyslaw Data
Professor @ Silesian University of Technology
Home
Publications
Research
Team
Contact
Download CV
Convenient One-Pot Synthesis of 1,2,3,4-Thiatriazoles Towards a Novel Electron Acceptor for Highly-Efficient Thermally-Activated Delayed-Fluorescence Emitters
Publications
Year
2019
Type(s)
Journal Article
Author(s)
Qu, Y. and Pander, P. and Bucinskas, A. and Vasylieva, M. and Tian, Y. and Miomandre, F. and Dias, F.B. and Clavier, G. and Data, P. and Audebert, P.
Source
Chemistry - A European Journal, 25(10): 2457—2462, 2019
Url
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060638525&doi=10.1002%2fchem.201805358&partnerID=40&md5=b5c9113766b7b8f240c7dafc54d1a0ed
BibTeX
BibTeX
BibTeX
@ARTICLE{Qu20192457, author={Qu, Y. and Pander, P. and Bucinskas, A. and Vasylieva, M. and Tian, Y. and Miomandre, F. and Dias, F.B. and Clavier, G. and Data, P. and Audebert, P.}, title={Convenient One-Pot Synthesis of 1,2,3,4-Thiatriazoles Towards a Novel Electron Acceptor for Highly-Efficient Thermally-Activated Delayed-Fluorescence Emitters}, journal={Chemistry - A European Journal}, year={2019}, volume={25}, number={10}, pages={2457-2462}, doi={10.1002/chem.201805358}, note={cited By 2}, url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060638525&doi=10.1002%2fchem.201805358&partnerID=40&md5=b5c9113766b7b8f240c7dafc54d1a0ed}, affiliation={PPSM, CNRS, ENS Paris-Saclay, 61 Avenue Président Wilson, Cachan, 94235, France; Physics Department, Durham University, South Road, Durham, DH1 3LE, United Kingdom; Department of Polymer Chemistry and Technology, Kaunas University of Technology, K. Baršausko St. 59, Kaunas, LT-51423, Lithuania; Faculty of Chemistry, Silesian University of Technology, M. Stzody 9, Gliwice, 44-100, Poland}, abstract={A novel and unexpected convenient one-pot synthesis of 1,2,3,4-thiatriazoles has been discovered while investigating the classical tetrazine “Pinner synthesis”. The synthetic route starts from commercially-available nitrile derivatives and gives good to high yields (51–80 %) with no need to isolate any thioacylating agents. The crucial impact of the solvent on the outcome of the modified “Pinner synthesis” is moreover examined and discussed. Using this new synthetic route, a novel donor-acceptor thiatriazole derivative has been prepared, which exhibits prominent thermally-activated delayed fluorescence (TADF) in both solution and film. The photoluminescence quantum yield (PLQY) in methylcyclohexane (MCH) and Zeonex (a cyclo olefin polymer) in oxygen-free conditions were determined to be 76 and 99 %, respectively. This work provides an efficient and practical synthetic approach to functionalized 1,2,3,4-thiatriazole derivatives, and will noticeably facilitate the application of 1,2,3,4-thiatriazole as an electron acceptor in organic electronics. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim}, author_keywords={delayed fluorescence; one-pot synthesis; Pinner synthesis; tetrazines; thiatriazoles}, keywords={Organic compounds, Cyclo-olefin polymers; Delayed fluorescence; One-pot synthesis; Organic electronics; Photoluminescence quantum yields; Tetrazines; Thermally activated delayed fluorescences; thiatriazoles, Fluorescence}, funding_details={H2020 Marie SkÅodowska-Curie ActionsH2020 Marie SkÅodowska-Curie Actions, MSCA, 674990}, funding_details={Horizon 2020 Framework ProgrammeHorizon 2020 Framework Programme, H2020}, funding_text 1={The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 674990 (EXCILIGHT).}, references={Freund, M., Schwarz, H.P., (1896) Ber. Dtsch. Chem. Ges., 29, pp. 2491-2499; Freund, M., Schander, A., (1896) Ber. Dtsch. Chem. Ges., 29, pp. 2500-2505; Lieber, E., Pillai, C.N., Hites, R.D., (1957) Can. J. Chem., 35, pp. 832-842; Lieber, E., Ramochandran, J., (1959) Can. J. Chem., 37, pp. 101-109; Jensen, K.A., Pedersen, C., (1964) Adv. Heterocycl. Chem., 3, pp. 263-284; Holm, A., (1976) Adv. Heterocycl. Chem., 20, pp. 145-174; Kirmse, W., (1960) Chem. Ber., 93, pp. 2353-2356; Jensen, K.A., Pedersen, C., (1961) Acta. Chem. Scand., 15, pp. 1104-1108; Smith, P.A.S., Kenny, D.H., (1961) J. Org. Chem., 26, pp. 5221-5224; Lieber, E., Rao, C.N.R., Orlowski, R.C., (1963) Can. J. Chem., 41, pp. 926-931; Holm, A., Harrit, N., Toubro, N.H., (1975) J. Am. Chem. Soc., 97, pp. 6197-6201; Holm, A., Harrit, N., Trabjerg, I., (1978) J. Chem. Soc. Perkin Trans. 1, pp. 746-750; Holm, A., Toubro, N.H., (1978) J. Chem. Soc. Perkin Trans. 1, pp. 1445-1449; Ikeda, S., Murai, T., Ishihara, H., Kato, S., (1990) Synthesis, pp. 415-416; Im, Y., Kim, M., Cho, Y.J., Seo, J.-A., Yook, K.S., Lee, J.Y., (2017) Chem. Mater., 29, pp. 1946-1963; Wong, M.Y., Zysman-Colman, E., (2017) Adv. Mater., 29, p. 1605444; Yang, Z., Mao, Z., Xie, Z., Zhang, Y., Liu, S., Zhao, J., Xu, J., Aldred, M.P., (2017) Chem. Soc. Rev., 46, pp. 915-1016; Huang, T., Jiang, W., Duan, L., (2018) J. Mater. Chem. C, 6, pp. 5577-5596; Dias, F.B., Penfold, T.J., Monkman, A.P., (2017) Methods Appl. Fluoresc., 5, p. 012001; Uoyama, H., Goushi, K., Shizu, K., Nomura, H., Adachi, C., (2012) Nature, 492, pp. 234-238; Zhang, Q., Li, B., Huang, S., Nomura, H., Tanaka, H., Adachi, C., (2014) Nat. Photonics, 8, pp. 326-332; Hirata, S., Sakai, Y., Masui, K., Tanaka, H., Lee, S.Y., Nomura, H., Nakamura, N., Adachi, C., (2015) Nat. Mater., 14, pp. 330-336; Etherington, M.K., Franchello, F., Gibson, J., Northey, T., Santos, J., Ward, J.S., Higginbotham, H.F., Monkman, A.P., (2017) Nat. Commun., 8, p. 14987; Kim, D.-H., Aléo, A., Chen, X.-K., Sandanayaka, A.D.S., Yao, D., Zhao, L., Komino, T., Adachi, C., (2018) Nat. Photonics, 12, pp. 98-104; Dias, F.B., Bourdakos, K.N., Jankus, V., Moss, K.C., Kamtekar, K.T., Bhalla, V., Santos, J., Monkman, A.P., (2013) Adv. Mater., 25, pp. 3707-3714; Wu, T.C., Congreve, D.N., Baldo, M.A., (2015) Appl. Phys. Lett., 107, p. 031103; Xiong, X., Song, F., Wang, J., Zhang, Y., Xue, Y., Sun, L., Jiang, N., Peng, X., (2014) J. Am. Chem. Soc., 136, pp. 9590-9597; Ward, J.S., Nobuyasu, R.S., Batsanov, A.S., Data, P., Monkman, A.P., Dias, F.B., Bryce, M.R., (2016) Chem. Commun., 52, pp. 2612-2615; Zhang, Y., Ma, H., Wang, S., Li, Z., Ye, K., Zhang, J., Liu, Y., Wang, Y., (2016) J. Phys. Chem. C, 120, pp. 19759-19767; Okazaki, M., Takeda, Y., Data, P., Pander, P., Higginbotham, H., Monkman, A.P., Minakata, S., (2017) Chem. Sci., 8, pp. 2677-2686; Rajamalli, P., Senthilkumar, N., Gandeepan, P., Ren-Wu, C.-Z., Lin, H.-W., Cheng, C.-H., (2016) J. Mater. Chem. C, 4, pp. 900-904; Pashazadeh, R., Pander, P., Lazauskas, A., Dias, F.B., Grazulevicius, J.V., (2018) J. Phys. Chem. Lett., 9, pp. 1172-1177; Xu, B., Mu, Y., Mao, Z., Xie, Z., Wu, H., Zhang, Y., Jin, C., Bryce, M.R., (2016) Chem. Sci., 7, pp. 2201-2206; Clavier, G., Audebert, P., (2010) Chem. Rev., 110, pp. 3299-3314; Kim, Y., Kim, E., Clavier, G., Audebert, P., (2006) Chem. Commun., pp. 3612-3614; Miomandre, F., Meallet-Renault, R., Vachon, J.J., Pansu, R.B., Audebert, P., (2008) Chem. Commun., pp. 1913-1915; Quinton, C., Alain-Rizzo, V., Dumas-Verdes, C., Clavier, G., Miomandre, F., Audebert, P., (2012) Eur. J. Org. Chem., pp. 1394-1403; Malinge, J., Allain, C., Brosseau, A., Audebert, P., (2012) Angew. Chem. Int. Ed., 51, pp. 8534-8537; (2012) Angew. Chem., 124, pp. 8662-8665; Audebert, P., Miomandre, F., (2013) Chem. Sci., 4, pp. 575-584; Quinton, C., Chi, S.-H., Dumas-Verdes, C., Audebert, P., Clavier, G., Perry, J.W., Alain-Rizzo, V., (2015) J. Mater. Chem. C, 3, pp. 8351-8357; Allain, C., Piard, J., Brosseau, A., Han, M., Paquier, J., Marchandier, T., Lequeux, M., Audebert, P., (2016) ACS Appl. Mater. Interfaces, 8, pp. 19843-19846; Qu, Y., Sauvage, F.-X., Clavier, G., Miomandre, F., Audebert, P., (2018) Angew. Chem. Int. Ed., 57, pp. 12057-12061; (2018) Angew. Chem., 130, pp. 12233-12237; Pinner, A., (1893) Ber. Dtsch. Chem. Ges., 26, pp. 2126-2135; Hofmann, K.A., Ehrhart, O., (1912) Ber. Dtsch. Chem. Ges., 45, pp. 2731-2740; Curtius, T., Hess, A., (1930) J. Prakt. Chem., 125, pp. 40-53; Abdel-Rhaman, M.O., Kira, M.A., Tolba, M.N., (1968) Tetrahedron Lett., 9, pp. 3871-3872; Carlson, J.C.T., Meimetis, L.G., Hilderbrand, S.A., Weissleder, R., (2013) Angew. Chem. Int. Ed., 52, pp. 6917-6920. , 3-(4-bromophenyl)-1,2,4,5-tetrazine was also obtained as a minor product. It is not surprising since it has already been demonstrated that DMF can act as a reactant involved in the tetrazine ring formation; (2013) Angew. Chem., 125, pp. 7055-7058; Levia, L., Müller, T.J.J., (2016) Chem. Soc. Rev., 45, pp. 2825-2846; de Moliner, F., Kielland, N., Lavilla, R., Vendrell, M., (2017) Angew. Chem. Int. Ed., 56, pp. 3758-3769; (2017) Angew. Chem., 129, pp. 3812-3823; Dias, F.B., Santos, J., Graves, D.R., Data, P., Nobuyasu, R.S., Fox, M.A., Batsanov, A.S., Monkman, A.P., (2016) Adv. Sci., 3, p. 1600080}, correspondence_address1={Clavier, G.; PPSM, CNRS, ENS Paris-Saclay, 61 Avenue Président Wilson, France; email: gilles.clavier@ens-cachan.fr}, publisher={Wiley-VCH Verlag}, issn={09476539}, coden={CEUJE}, pubmed_id={30680814}, language={English}, abbrev_source_title={Chem. Eur. J.}, document_type={Article}, source={Scopus},