Prof. Przemyslaw Data
Professor @ Silesian University of Technology
Home
Publications
Research
Team
Contact
Download CV
Electrochemically Induced Synthesis of Triphenylamine-based Polyhydrazones
Publications
Year
2017
Type(s)
Journal Article
Author(s)
Data, P. and Pander, P. and Zassowski, P. and Mimaite, V. and Karon, K. and Lapkowski, M. and Grazulevicius, J.V. and Slepski, P. and Darowicki, K.
Source
Electrochimica Acta, 230: 10—21, 2017
Url
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85011395247&doi=10.1016%2fj.electacta.2017.01.132&partnerID=40&md5=d36f836bc90d0f1425a91076ccbd8a8b
BibTeX
BibTeX
BibTeX
@ARTICLE{Data201710, author={Data, P. and Pander, P. and Zassowski, P. and Mimaite, V. and Karon, K. and Lapkowski, M. and Grazulevicius, J.V. and Slepski, P. and Darowicki, K.}, title={Electrochemically Induced Synthesis of Triphenylamine-based Polyhydrazones}, journal={Electrochimica Acta}, year={2017}, volume={230}, pages={10-21}, doi={10.1016/j.electacta.2017.01.132}, note={cited By 8}, url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85011395247&doi=10.1016%2fj.electacta.2017.01.132&partnerID=40&md5=d36f836bc90d0f1425a91076ccbd8a8b}, affiliation={Physics Department, Durham University, South Road, Durham, DH1 3LE, United Kingdom; Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, Gliwice, 44-100, Poland; Center of Polymer and Carbon Materials, Polish Academy of Science, M. Curie-Sklodowskiej 34, Zabrze, 41-819, Poland; Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu pl. 19, Kaunas, LT-50254, Lithuania; Department of Electrochemistry, Corrosion and Material Engineering, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk, 80 233, Poland}, abstract={Triphenylamine-based hydrazones were subjected to electropolymerization process that gave well conductive hydrazone based polymers. The first example of polyhydrazone formation during the electrochemical process was shown. The estimation of polymer structure was demonstrated using IR spectroelectrochemistry. The EPR spectroelectrochemistry allowed to explain why in some cases dimer couldn't be formed. The results of electrochemical, spectroelectrochemical investigation of small molecules, as well as their polymers obtained by electropolymerization, are presented. The comparative study of electropolymerization and doping process by IR, EPR, potentiostatic and potentiodynamic UV-Vis-NIR, DEIS spectroelectrochemical techniques was performed to determine the reaction path, charge carriers and conductivity of polymeric layers. © 2017 The Authors}, author_keywords={DEIS; EPR; hydrazone; spectroelectrochemistry; triphenylamine}, keywords={Dimers; Electropolymerization; Paramagnetic resonance; Spectroelectrochemistry, Comparative studies; DEIS; Electrochemical process; Hydrazones; IR spectroelectrochemistry; Spectroelectrochemical investigations; Spectroelectrochemical technique; Triphenyl amines, Polymers}, references={Hidai, M., Mizobe, Y., Recent Advances in the Chemistry of Dinitrogen Complexes (1995) Chem. Rev., 95, p. 1115; Lazny, R., Nodzewska, A., N,N-Dialkylhydrazones in Organic Synthesis. From Simple N,N-Dimethylhydrazones to Supported Chiral Auxiliaries (2010) Chem. Rev., 110, p. 1386; Kobayashi, S., Mori, Y., Fossey, J.S., Salter, M.M., Catalytic enantioselective formation of C-C bonds by addition to imines and hydrazones: a ten-year update (2011) Chem. Rev., 111, p. 2626; Lehn, J.-M., From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry (2007) Chem. Soc. Rev., 36, p. 151; Lehn, J.-M., Constitutional Dynamic Chemistry: Bridge from Supramolecular Chemistry to Adaptive Chemistry (2012), Springer; Lehn, J.-M., Perspectives in Chemistry—Steps towards Complex Matter (2013) Angew. Chem. Int. Ed., 52, p. 2836; Vicini, P., Zani, F., Cozzini, P., Doytchinova, I., Hydrazones of 1,2-benzisothiazole hydrazides: synthesis, antimicrobial activity and QSAR investigations (2002) Eur. J. Med. Chem., 37, p. 553; Loncle, C., Brunel, J., Vidal, N., Dherbomez, M., Letourneux, Y., Synthesis and antifungal activity of cholesterol-hydrazone derivatives (2004) Eur. J. Med. Chem., 39, p. 1067; Masunari, A., Tavares, L.C., A new class of nifuroxazide analogues: Synthesis of 5-nitrothiophene derivatives with antimicrobial activity against multidrug-resistant Staphylococcus aureus (2007) Bioorg. Med. Chem., 15, p. 4229; Vicini, P., Incerti, M., La Colla, P., Loddo, R., Anti-HIV evaluation of benzo[d]isothiazole hydrazones (2009) Eur. J. Med. Chem., 44, p. 1801; Raue, R., Brack, A., Lange, K., Salt-free Synthesis of Azo and Hydrazone Dyes Under CO2 Pressure (1991) Angew. Chem. Int. Ed., 30, p. 1643; Shen, P., Liu, X., Jiang, S., Huang, Y., Yi, L., Zhao, B., Tan, S., Effects of aromatic π-conjugated bridges on optical and photovoltaic properties of N,N-diphenylhydrazone-based metal-free organic dyes (2011) Org. Electron., 12, p. 1992; Getautis, V., Daskeviciene, M., Gaidelis, V., Jankauskas, V., New branched hydrazones as hole transporting materials (2005) J. Photochem. Photobiol. A: Chem, 175, p. 39; Lygaitis, R., Getautis, V., Grazulevicius, J.V., Hole-transporting hydrazones (2008) Chem. Soc. Rev., 37, p. 770; Kwon, O.-P., Jazbinsek, M., Yun, H., Seo, J.-I., Kim, E.-M., Lee, Y.-S., Gunter, P., Pyrrole-Based Hydrazone Organic Nonlinear Optical Crystals and Their Polymorphs (2008) Cryst. Growth Des., 8, p. 4021; Uribe-Romo, F.J., Doonan, C.J., Furukawa, H., Oisaki, K., Yaghi, O.M., Crystalline Covalent Organic Frameworks with Hydrazone Linkages (2011) J. Am. Chem. Soc., 133, p. 11478; Zhou, X.-P., Wu, Y., Li, D., Polyhedral metal-imidazolate cages: control of self-assembly and cage to cage transformation (2013) J. Am. Chem. Soc., 135, p. 16062; Bunck, D.N., Dichtel, W.R., Bulk synthesis of exfoliated 2D polymers using hydrazone-linked covalent organic frameworks (2013) J. Am. Chem. Soc., 135, p. 14952; Su, X., Aprahamian, I., Hydrazone-based switches, metallo-assemblies and sensors (2014) Chem. Soc. Rev., 43, p. 1963; Rowan, S., Cantrill, S., Cousins, G., Sanders, J., Stoddart, J., Dynamic covalent chemistry (2002) Angew. Chem. Int. Ed., 41, p. 898; Corbett, P.T., Leclaire, J., Vial, L., West, K.R., Wietor, J.-L., Sanders, J.K.M., Otto, S., Dynamic combinatorial chemistry (2006) Chem. Rev., 106, p. 3652; Jin, Y., Yu, C., Denman, R.J., Zhang, W., Recent advances in dynamic covalent chemistry (2013) Chem. Soc. Rev., 42, p. 6634; Juozapavicius, M., O'Regan, B.C., Anderson, A.Y., Grazulevicius, J.V., Mimaite, V., Efficient dye regeneration in solid-state dye-sensitized solar cells fabricated with melt processed hole conductors (2012) Org. Electron., 13, p. 23; Tatum, L.A., Su, X., Aprahamian, I., Simple Hydrazone Building Blocks for Complicated Functional Materials (2014) Acc. Chem. Res., p. 2141; Japp, F.R., Klingemann, F., Ueber die Constitution einiger sogenannten gemischten Azoverbindungen (1888) Justus Liebigs Ann. Chem., 247, p. 190; Stork, G., Benaim, J., Monoalkylation of α,β-unsaturated ketones via metalloenamines: 1-butyl-10methyl Δ1(9)-2-octalone (1977) Org. Synth., 57, p. 69; Lefebvre, V., Cailly, T., Fabis, F., Rault, S., Two-Step Synthesis of Substituted 3-Aminoindazoles from 2-Bromobenzonitriles (2010) J. Org. Chem., 75, p. 2730; Borsenberger, P.M., Hole transport inp-diethylamino-benzaldehyde-diphenyl hydrazine (1992) Adv. Mater. Opt. Electron., 1, p. 73; Nomura, S., Nishimura, K., Shirota, Y., Charge Transport in the Supercooled Liquid State of Arylaldehyde Hydrazones (1998) Mol. Cryst. Liq. Cryst., 313, p. 247; Getautis, G.V., Daskeviciene, M., Malinauskas, T., Gaidelis, V., Jankauskas, V., Tokarski, Z., Cross-linkable hydrazone-containing molecular glasses for electrophotography (2005) Synthetic Met., 155, p. 599; Mimaite, V., Grazulevicius, J.V., Ostrauskaite, J., Jankauskas, V., Synthesis and properties of triphenylamine-based hydrazones with reactive vinyl groups (2012) Dyes Pigments, 95, p. 47; Getautis, V., Grazulevicius, J.V., Malinauskas, T., Jankauskas, V., Tokarski, Z., Jubran, N., Novel Families of Hole-Transporting Monomers and Polymers (2004) Chem. Lett., 33, p. 1336; Getautis, V., Grazulevicius, J.V., Daskeviciene, M., Malinauskas, T., Jankunaite, D., Gaidelis, V., Jankauskas, V., Tokarski, Z., Novel hydrazone based polymers as hole transporting materials (2005) Polymer, 46, p. 7918; Getautis, V., Grazulevicius, J.V., Daskeviciene, M., Malinauskas, T., Jankauskas, V., Sidaravicius, J., Undzenas, A., Novel dihydrazone based polymers for electrophotography (2007) Eur. Polym. J., 43, p. 3597; Getautis, V., Paliulis, O., Paulauskaite, I., Gaidelis, V., Jankauskas, V., Sidaravicius, J., Tokarski, Z., Jubran, N., Crosslinkable Branched Hydrazones as Hole Transporting Materials (2004) J. Imag. Sci. Technol., 48, p. 265; Juskelyte, E., Lygaitis, R., Buika, G., Ostrauskaite, J., Gudeika, D., Grazulevicius, J.V., Jankauskas, V., Glass-forming hole-transporting carbazole-based hydrazone monomers, polymers, and twin compounds (2010) React. Funct. Polym., 70, p. 81; Andrikaityte, E., Cekaviciute, M., Simokaitiene, J., Buika, G., Grazulevicius, J.V., Rubeziene, V., Glass-forming 1,3-bis(carbazol-9-yl)propan-2-ol based monomers and polymers (2012) React. Funct. Polym., 72, p. 11; Simokaitiene, J., Danilevicius, A., Grigalevicius, S., Grazulevicius, J.V., Getautis, V., Jankauskas, V., Phenotiazinyl-based hydrazones as new hole-transporting materials for electrophotographic photoreceptors (2006) Synthetic Met., 156, p. 926; Laurinaviciute, R., Ostrauskaite, J., Grazulevicius, J.V., Jankauskas, V., Synthesis, properties, and self-polymerization of hole- transporting carbazole-and triphenylamine-based hydrazone monomers (2014) Des. Monomers Polym., 17, p. 255; Michaleviciute, A., Lygaitis, R., Andrikaityte, E., Ostrauskaite, J., Grazulevicius, J.V., Jankauskas, V., Pedisius, N., Charge-transporting 3,4-ethylenedioxythiophene-based hydrazone monomers and oligomers (2013) Polym. Bull., 70, p. 1519; Barbey, G., Caullet, C., Oxydation electrochimique sur electrode de platine de la benzaldehyde diphenyl hydrazone en milieu nucleophile basique (1974) Tetrahedron Lett., 18, p. 1717; Lameille, B., Barbey, G., Caullet, C., Oxydation electrochimique de phenylhydrazones du benzaldehyde (1984) Electrochim. Acta, 29, p. 339; Pacansky, J., McLean, A.D., Miller, M.D., Theoretical calculations and experimental studies on the electronic structures of hydrazones and hydrazone radical cations: formaldehyde hydrazone and benzaldehyde diphenylhydrazones (1990) J. Phys. Chem., 94, p. 90; Lee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density (1988) Phys. Rev. B., 37, p. 785; Becke, A.D., A new mixing of Hartree–Fock and local density-functional theories (1993) J. Chem. Phys., 98, p. 1372; Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange (1993) J. Chem. Phys., 98, p. 5648; Tomasi, J., Mennucci, B., Cammi, R., Quantum mechanical continuum solvation models (2005) Chem. Rev., 105, p. 2999; Gaussian 09, Revision D.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc Wallingford CT, 2009; Allouche, A.-R., Gabedit—A graphical user interface for computational chemistry softwares (2011) J. Comput. Chem., 32, p. 174; Chung, Y.C., Su, Y.O., Effects of Phenyl- and Methyl-Substituents on p-Phenylenediamine, an Electrochemical and Spectral Study (2009) J. Chin. Chem. Soc., 56, p. 493; Nelson, R.F., Adams, R.N., Anodic oxidation pathways of substituted triphenylamines. II. Quantitative studies of benzidine formation (1968) J. Am. Chem. Soc., 90, p. 3925; Creason, S.C., Wheeler, J., Nelson, R.F., Electrochemical and spectroscopic studies of cation radicals. I. Coupling rates of 4-substituted triphenylaminium ion (1972) J. Org. Chem., 37, p. 4440; Seo, E.T., Nelson, R.F., Fritsch, J.M., Marcoux, L.S., Leedy, D.W., Adams, R.N., Anodic Oxidation Pathways of Aromatic Amines. Electrochemical and Electron Paramagnetic Resonance Studies (1966) J. Am. Chem. Soc., 88, p. 3498; Vallat, A., Laviron, E., Theoretical study of ece mechanisms in thin layer linear potential sweep voltammetry (1976) J. Electroanal. Chem., 74, p. 309; Chiu, K.Y., Su, T.X., Li, J.H., Lin, T.-H., Liou, G.-S., Cheng, S.-H., Novel trends of electrochemical oxidation of amino-substituted triphenylamine derivatives (2005) J. Electroanal. Chem., 575, p. 95; Oldfield, L.F., Bockris, J.O.M., Reversible Oxidation-Reduction Reactions of Aromatic Amines (1951) J. Phys. Chem., 55, p. 1255; Yang, H., Bard, A.J., The application of fast scan cyclic voltammetry. Mechanistic study of the initial stage of electropolymerization of aniline in aqueous solutions (1992) J. Electroanal. Chem., 339, p. 423; Pei, J., Yu, W.-L., Ni, J., Lai, Y.-H., Huang, W., Heeger, A.J., Thiophene-Based Conjugated Polymers for Light-Emitting Diodes: Effect of Aryl Groups on Photoluminescence Efficiency and Redox Behavior (2001) Macromolecules, 34, p. 7241; Lapkowski, M., Data, P., Golba, S., Soloducho, J., Nowakowska-Oleksy, A., Unusual band-gap migration of N-alkylcarbazole-thiophene derivative (2011) Opt. Mater., 22, p. 1445; Trasatti, S., The absolute electrode potential: an explanatory note (1986) Pure Appl. Chem., 58, p. 955; Data, P., Lapkowski, M., Motyka, R., Suwinski, J., Influence of heteroaryl group on electrochemical and spectroscopic properties of conjugated polymers (2012) Electrochim. Acta, 83, p. 271; Data, P., Pander, P., Lapkowski, M., Swist, A., Soloducho, J., Reghu, R.R., Grazulevicius, J.V., Unusual properties of electropolymerized 2,7-and 3,6-carbazole derivatives (2014) Electrochim. Acta, 128, p. 430; Bredas, J.L., Mind the Gap! (2014) Mater. Horiz., 1, p. 17; Data, P., Lapkowski, M., Motyka, R., Suwinski, J., Influence of alkyl chain on electrochemical and spectroscopic properties of polyselenophenes (2013) Electrochim. Acta, 87, p. 438; Data, P., Lapkowski, M., Motyka, R., Suwinski, J., Monkman, A.P., Spectroelectrochemical analysis of charge carriers as a way of improving poly (p-phenylene)-based electrochromic windows (2015) J. Phys. Chem. C, 119, p. 20188}, correspondence_address1={Data, P.; Physics Department, Durham University, South Road, United Kingdom; email: Przemyslaw.Data@dur.ac.uk}, publisher={Elsevier Ltd}, issn={00134686}, coden={ELCAA}, language={English}, abbrev_source_title={Electrochim Acta}, document_type={Article}, source={Scopus},