Prof. Przemyslaw Data
Professor @ Silesian University of Technology
Home
Publications
Research
Team
Contact
Download CV
Highly efficient TADF OLEDs: How the emitter-host interaction controls both the excited state species and electrical properties of the devices to achieve near 100% triplet harvesting and high efficiency
Publications
Year
2014
Type(s)
Journal Article
Author(s)
Jankus, V. and Data, P. and Graves, D. and McGuinness, C. and Santos, J. and Bryce, M.R. and Dias, F.B. and Monkman, A.P.
Source
Advanced Functional Materials, 24(39): 6178—6186, 2014
Url
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84915748928&doi=10.1002%2fadfm.201400948&partnerID=40&md5=5907ccf0675b3a2998c870f5d7ba746c
BibTeX
BibTeX
BibTeX
@ARTICLE{Jankus20146178, author={Jankus, V. and Data, P. and Graves, D. and McGuinness, C. and Santos, J. and Bryce, M.R. and Dias, F.B. and Monkman, A.P.}, title={Highly efficient TADF OLEDs: How the emitter-host interaction controls both the excited state species and electrical properties of the devices to achieve near 100% triplet harvesting and high efficiency}, journal={Advanced Functional Materials}, year={2014}, volume={24}, number={39}, pages={6178-6186}, doi={10.1002/adfm.201400948}, note={cited By 166}, url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84915748928&doi=10.1002%2fadfm.201400948&partnerID=40&md5=5907ccf0675b3a2998c870f5d7ba746c}, affiliation={Physics Department, University of Durham, South Road, Durham, DH1 3LE, United Kingdom; Faculty of Chemistry, Silesian University of Technology, M. Strzody-9, Gliwice, 44-100, Poland; Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, United Kingdom}, abstract={New emitters that can harvest both singlet and triplet excited states to give 100% internal conversion of charge into light, are required to replace Ir based phosphors in organic light emitting diodes (OLEDs). Molecules that have a charge transfer (CT) excited state can potentially achieve this through the mechanism of thermally activated delayed fluorescence (TADF). Here, it is shown that a D-A charge transfer molecule in the solid state, can emit not only via an intramolecular charge transfer (ICT) excited state, but also from exciplex states, formed between the molecule and the host material. OLEDs based on a previously studied D-A-D molecule in a host TAPC achieves >14% external electroluminescence yield and shows nearly 100% efficient triplet harvesting. In these devices, it is unambiguously established that the triplet states are harvested via TADF, but more interestingly, these results are found to be independent of whether the emitter is the ICT state or the D-A-D/host exciplex. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.}, keywords={Charge transfer; Electroluminescence; Fluorescence; Harvesting; Iridium; Light; Molecules; Organic light emitting diodes (OLED), Charge transfer molecules; Host interactions; Host materials; Internal conversions; Intramolecular charge transfers; Organic light emitting diodes(OLEDs); Thermally activated delayed fluorescences; Triplet state, Excited states}, funding_details={Engineering and Physical Sciences Research CouncilEngineering and Physical Sciences Research Council, EPSRC}, references={Kondakov, D.Y., (2007) J. Appl. Phys, 102, p. 114504; Adamovich, V., Brooks, J., Tamayo, A., Alexander, A.M., Djurovich, P.I., D'andrade, B.W., Adachi, C., Thompson, M.E., (2002) New J. Chem, 26, p. 1171; Sun, Y., Forrest, S.R., (2007) Appl. Phys. Lett, 91, p. 263503; Adachi, C., Baldo, M.A., Thompson, M.E., Forrest, S.R., (2001) J. Appl. Phys, 90, p. 5048; Lakowicz, L.R., (1999) Principles of Fluorescence Spectroscopy, , Kluwer Academic/ Plenum Pyblishers, New York; Sivasubramaniam, V., Brodkorb, F., Hanning, S., Loebl, H.P., Van Elsbergen, V., Boerner, H., Scherf, U., Kreyenschmidt, M., (2009) J. Fluorine Chem, 130, p. 640; Kondakov, D.Y., Pawlik, T.D., Hatwar, T.K., Spindler, J.P., (2009) J. Appl. Phys, 106, p. 124510; King, S.M., Cass, M., Pintani, M., Coward, C., Dias, F.B., Monkman, A.P., Roberts, M., (2011) J. Appl. Phys, 109, p. 074502; Zhang, Y., Forrest, S.R., (2012) Phys. Rev. Lett, 108, p. 267404; Goushi, K., Yoshida, K., Sato, K., Adachi, C., (2012) Nat. Photonics, 6, p. 253; Lee, S.Y., Yasuda, T., Nomura, H., Adachi, C., (2012) Appl. Phys. Lett, p. 101; Beens, H., Weller, A., (1968) Acta Phys. Polonica, 34, p. 539; Weller, A., (1975) The Exciplex, , (Eds: M. Gordon, W. R. Ware), Academic Press Inc., London; Frederichs, B., Staerk, H., (2008) Chem. Phys. Lett, 460, p. 116; Uoyama, H., Goushi, K., Shizu, K., Nomura, H., Adachi, C., (2012) Nature, 492, p. 234; Sato, K., Shizu, K., Yoshimura, K., Kawada, A., Miyazaki, H., Adachi, C., (2013) Phys. Rev. Lett, 110, p. 247401; Dias, F.B., Bourdakos, K.N., Jankus, V., Moss, K.C., Kamtekar, K.T., Bhalla, V., Santos, J., Monkman, A.P., (2013) Adv. Mater, 25, p. 3707; Moss, K.C., Bourdakos, K.N., Bhalla, V., Kamtekar, K.T., Bryce, M.R., Fox, M.A., Vaughan, H.L., Monkman, A.P., (2010) J. Organ. Chem, 75, p. 6771; Dias, F.B., Pollock, S., Hedley, G., Palsson, L.-O., Monkman, A., Perepichka, I.I., Perepichka, I.F., Bryce, M.R., (2006) J. Phys. Chem B, 110, p. 19329; Jankus, V., Chiang, C.-J., Dias, F., Monkman, A.P., (2013) Adv. Mater, 25, p. 1455; Kamtekar, K.T., Dahms, K., Batsanov, A.S., Jankus, V., Vaughan, H.L., Monkman, A.P., Bryce, M.R., (2010) J. Polym. Sci. Part A, 49, p. 1129; Zheng, Y., Batsanov, A.S., Jankus, V., Dias, F.B., Bryce, M.R., Monkman, A.P., (2011) J. Organ. Chem, 76, p. 8300; Mashford, B.S., Stevenson, M., Popovic, Z., Hamilton, C., Zhou, Z., Breen, C., Steckel, J., Kazlas, P.T., (2013) Nat. Photonics, 7, p. 407; Kozhevnikov, V.N., Zheng, Y., Clough, M., Al-Attar, H.A., Griffiths, G.C., Abdullah, K., Raisys, S., Monkman, A.P., (2013) Chem. Mater, 25, p. 2352; Furno, M., Meerheim, R., Hofmann, S., Luessem, B., Leo, K., (2012) Phys. Rev. B, p. 85; Greenham, N.C., Friend, R.H., Bradley, D.D.C., (1994) Adv. Mater, 6, p. 491; Goushi, K., Kwong, R., Brown, J.J., Sasabe, H., Adachi, C., (2004) J. Appl. Phys, 95, p. 7798; Takizawa, S.-Y., Montes, V.A., Anzenbacher, P., (2009) Chem. Mater, 21, p. 2452; Jankus, V., Snedden, E.W., Bright, D.W., Arac, E., Dai, D., Monkman, A.P., (2013) Phys. Rev. B, 87, p. 224202; Graves, D., Jankus, V., Dias, F.B., Monkman, A., (2014) Adv. Funct. Mater, 24, p. 2343; Hertel, D., Bassler, H., Guentner, R., Scherf, U., (2001) J. Chem. Phys, 115, p. 10007; Jankus, V., Snedden, E.W., Bright, D.W., Whittle, V.L., Wzilliams, J.A.G., Monkman, A., (2013) Adv. Funct. Mater, 23, p. 384; Singh-Rachford, T.N., Castellano, F.N., (2010) Coordination Chem. Rev, 254, p. 2560; Koti, A.S.R., Krishna, M.M.G., Periasamy, N., (2001) J. Phys. Chem. A, 105, p. 1767; Data, P., Pander, P., Lapkowski, M., Swist, A., Soloducho, J., Reghu, R.R., Grazulevicius, J.V., (2014) Electrochim. Acta, 128, p. 430; Bredas, J.-L., (2014) Mater. Horizons, 1, p. 17; Palsson, L.-O., Monkman, A.P., (2002) Adv. Mater, 14, p. 757; Rothe, C., Monkman, A.P., (2003) Phys. Rev. B, 68, p. 075208}, correspondence_address1={Jankus, V.; Physics Department, University of Durham, South Road, United Kingdom}, publisher={Wiley-VCH Verlag}, issn={1616301X}, coden={AFMDC}, language={English}, abbrev_source_title={Adv. Funct. Mater.}, document_type={Article}, source={Scopus},