Prof. Przemyslaw Data
Professor @ Silesian University of Technology
Home
Publications
Research
Team
Contact
Download CV
Kesterite Inorganic-Organic Heterojunction for Solution Processable Solar Cells
Publications
Year
2016
Type(s)
Journal Article
Author(s)
Data, P. and Bialoglowski, M. and Lyzwa, K. and Bacewicz, R. and Dluzewski, P. and Lapkowski, M. and Gregorkiewicz, T. and Podsiadlo, S. and Monkman, A.P.
Source
Electrochimica Acta, 201: 78—85, 2016
Url
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84962665041&doi=10.1016%2fj.electacta.2016.03.132&partnerID=40&md5=d95bc20e865e5a19a9c80c3d2318c8c1
BibTeX
BibTeX
BibTeX
@ARTICLE{Data201678, author={Data, P. and Bialoglowski, M. and Lyzwa, K. and Bacewicz, R. and Dluzewski, P. and Lapkowski, M. and Gregorkiewicz, T. and Podsiadlo, S. and Monkman, A.P.}, title={Kesterite Inorganic-Organic Heterojunction for Solution Processable Solar Cells}, journal={Electrochimica Acta}, year={2016}, volume={201}, pages={78-85}, doi={10.1016/j.electacta.2016.03.132}, note={cited By 1}, url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84962665041&doi=10.1016%2fj.electacta.2016.03.132&partnerID=40&md5=d95bc20e865e5a19a9c80c3d2318c8c1}, affiliation={Physics Department, Durham University, South Road, Durham, DH1 3LE, United Kingdom; Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, Gliwice, 44-100, Poland; Center of Polymer and Carbon Materials, Polish Academy of Science, M. Curie-Sklodowskiej 34, Zabrze, 41-819, Poland; Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warszawa, 00-664, Poland; Faculty of Physics, Warsaw University of Technology, Koszykowa 75, Warszawa, 00-668, Poland; Institute of Physics, Polish Academy of Science, Al. Lotnikow 32/46, Warszawa, 02-668, Poland; Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, Amsterdam, 1098XH, Netherlands}, abstract={New synthesis of solution processable kesterite and kesterite-phenoxazine nanopowders were presented. The direct band-gap semiconductor Cu2ZnSnS4 has attracted the attention of many due to its large absorption coefficient (α > 104 cm-1) and (optical) band-gap energy close to the optimal value for solar light conversion (1.4-1.6 eV). The presence of a kesterite nanocrystal structure has been investigated and confirmed by (HR)TEM, X-ray powder diffraction, EDX and EXAFS measurements. Low-temperature photoluminescence (PL) measurements indicate the absence of PL in the Cu2ZnSnS4 nanocrystals. Electrochemical studies helped to prove that an inorganic-organic heterojunction of nanokesterite-phenoxazine was obtained. Device studies showed a two fold improvement in efficiency upon addition of a kesterite or phenoxazines-kesterite layer. © 2016 Elsevier Ltd. All rights reserved.}, author_keywords={electrochemistry; kesterite; P3HT; phenoxazine; solar cells}, keywords={Electrochemistry; Energy gap; Nanocrystals; Solar cells; Temperature; X ray powder diffraction, Direct band gap semiconductors; Electrochemical studies; Inorganic-organic heterojunctions; Kesterites; Large absorption coefficient; Low temperature photoluminescence; P3HT; Phenoxazine, Heterojunctions}, funding_details={Narodowe Centrum NaukiNarodowe Centrum Nauki, NCN, 2011/03/B/ST5/02731}, funding_text 1={This study was supported by a grant from the National Science Centre, Poland ( 2011/03/B/ST5/02731 ). We thank Prof. A. Pron for assistance in the electrochemical investigations and Monika Guzowska for experimental assistance.}, references={Guo, Q., Hillhouse, H.W., Agrawal, R., Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells (2009) J. Am. Chem. Soc., 131; Fairbrother, A., Garcia-Hemme, E., Izquierdo-Roca, V., Fontane, X., Pulgarin-Agudelo, F.A., Vigil-Galan, O., Perez-Rodriguez, A., Saucedo, E., Development of a selective chemical etch to improve the conversion efficiency of Zn-rich Cu2ZnSnS4 solar cells (2012) J. Am. Chem. Soc., 134, p. 8018; Zou, Y., Su, X., Jiang, J., Phase-controlled synthesis of Cu2ZnSnS4 nanocrystals: The role of reactivity between Zn and S (2013) J. Am. Chem. Soc., 135; Guo, Q.-J., Ford, G.M., Yang, W.-C., Walker, B.C., Stach, E.A., Hillhouse, H.W., Agrawal, R., Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals (2010) J. Am. Chem. Soc., 132; Siebentritt, S., Schorr, S., Kesterites - A challenging material for solar cells (2012) Prog. Photovoltaics, 20, p. 512; Kurokawa, M., Tanaka, K., Moriya, K., Uchiki, H., Fabrication of Three-Dimensional-Structure Solar Cell with Cu2ZnSnS4 (2012) Jpn. J. Appl. Phys., 51; Ahmed, S., Reuter, K.B., Gunawan, O., Guo, L., Romankiw, L.T., Deligianni, H., High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell (2012) Adv. Energy Mater., 2, p. 253; Yang, H., Jauregui, L.A., Zhang, G., Chen, Y.P., Wu, Y., Nontoxic and Abundant Copper Zinc Tin Sulfide Nanocrystals for Potential High-Temperature Thermoelectric Energy Harvesting (2012) Nano Lett., 12, p. 540; Polizzotti, A., Repins, I.L., Noufi, R., Wei, S.H., Mitzi, D.B., The state and future prospects of kesterite photovoltaics (2013) Energy Environ. Sci., 6, p. 3171; Mousel, M., Schwarz, T., Djemour, R., Weiss, T.P., Sendler, J., Malaquias, J.C., Redinger, A., Siebentritt, S., Cu-Rich Precursors Improve Kesterite Solar Cells (2014) Adv. Energy Mater., 4; Zhou, H., Hsu, W.-C., Duan, H.-S., Bob, B., Yang, W., Song, T.-B., Hsu, C.-J., Yang, Y., CZTS nanocrystals: A promising approach for next generation thin film photovoltaics (2013) Energy Environ. Sci., 6, p. 2822; Peter, L.M., Towards sustainable photovoltaics: The search for new materials (2011) Philos. Trans. R. Soc. London, Ser. A, 369, p. 1840; Seol, J.-S., Lee, S.-Y., Lee, J.-C., Nam, H.-D., Kim, K.-H., Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process (2003) Sol. Energy Mater. Sol. Cells, 75, p. 155; Walsh, A., Chen, S., Wei, S.-H., Gong, X.-G., Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4 (2012) Adv. Energy Mater., 2, p. 400; Khare, A., Wills, A.W., Ammerman, L.M., Norris, D.J., Aydil, E.S., Size control and quantum confinement in Cu2ZnSnS4 nanocrystals (2011) Chem. Commun., 47; Winkler, M.T., Wei, W., Gunawan, O., Hovel, H.J., Todorov, T.K., Mitzi, D.B., Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells (2014) Energy Environ. Sci., 7, p. 1029; Mendis, B.G., Shannon, M.D., Goodman, M.C.J., Major, J.D., Claridge, R., Halliday, D.P., Durose, K., Direct observation of Cu Zn cation disorder in Cu2ZnSnS4 solar cell absorber material using aberration corrected scanning transmission electron microscopy (2014) Prog. Photovolt. Res. Appl., 22, p. 24; Barkhouse, D.A.R., Gunawan, O., Gokmen, T., Todorov, T.K., Mitzi, D.B., Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell (2012) Prog. Photovoltaics, 20, p. 6; Todorov, T.K., Reuter, K.B., Mitzi, D.B., High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber (2010) Adv. Mater., 22, p. E156; Wu, W., Cao, Y., Caspar, J.V., Guo, Q., Johnson, L.K., Malajovich, I., Rosenfeld, H.D., Choudhury, K.R., Studies of the fine-grain sub-layer in the printed CZTSSe photovoltaic devices (2014) J. Mater. Chem. C, 2, p. 3777; Azimi, H., Hou, Y., Brabec, C.J., Towards low-cost, environmentally friendly printed chalcopyrite and kesterite solar cells (2014) Energy Environ. Sci., 7, p. 1829; Li, C., Liu, M., Pschirer, N.G., Baumgarten, M., Muellen, K., Polyphenylene-Based Materials for Organic Photovoltaics (2010) Chem. Rev., 110, p. 6817; Habas, S.E., Platt, H.A.S., Van Hest, M.F.A.M., Ginley, D.S., Low-Cost Inorganic Solar Cells: From Ink to Printed Device (2010) Chem. Rev., 110, p. 6571; Shi, L., Pei, C., Xu, Y., Li, Q., Template-Directed Synthesis of Ordered Single-Crystalline Nanowires Arrays of Cu2ZnSnS4 and Cu2ZnSnSe4 (2011) J. Am. Chem. Soc., 133; Shavel, A., Cadavid, D., Ibanez, M., Carrete, A., Cabot, A., Continuous Production of Cu2ZnSnS4 Nanocrystals in a Flow Reactor (2012) J. Am. Chem. Soc., 134, p. 1438; Singh, A., Geaney, H., Laffir, F., Ryan, K.M., Colloidal Synthesis of Wurtzite Cu2ZnSnS4 Nanorods and Their Perpendicular Assembly (2012) J. Am. Chem. Soc., 134, p. 2910; Zhou, H., Duan, H.-S., Yang, W., Chen, Q., Hsu, C.-J., Hsu, W.-C., Chen, C.-C., Yang, Y., Facile single-component precursor for Cu2ZnSnS4 with enhanced phase and composition controllability (2014) Energy Environ. Sci., 7, p. 998; Miskin, C.K., Yang, W.C., Hages, C.J., Carter, N.J., Joglekar, C.S., Stach, E.A., Agrawal, R., 9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks (2015) Prog. Photovolt. Res. Appl., 23, p. 654; Wang, Y.-X., Wei, M., Fan, F.-J., Zhuang, T.-T., Wu, L., Yu, S.-H., Zhu, C.-F., Phase-Selective Synthesis of Cu2ZnSnS4 Nanocrystals through Cation Exchange for Photovoltaic Devices (2014) Chem. Mater., 26, p. 5492; Singh, A., Geaney, H., Laffir, F., Ryan, K.M., Colloidal Synthesis of Wurtzite Cu2ZnSnS4 Nanorods and Their Perpendicular Assembly (2012) J. Am. Chem. Soc., 134, p. 2910; Yang, W.-C., Miskin, C.K., Hages, C.J., Hanley, E.C., Handwerker, C., Stach, E.A., Agrawal, R., Kesterite Cu2ZnSn(S,Se)4 Absorbers Converted from Metastable, Wurtzite-Derived Cu2ZnSnS4 Nanoparticles (2014) Chem. Mater., 26, p. 3530; Li, C., Cao, M., Huang, J., Wang, L.J., Shen, Y., Mechanism study of structure and morphology control of solvothermal synthesized Cu2ZnSnS4 nanoparticles by using different sulfur precursors (2015) Mat. Sci. Semic. Process., 31, p. 287; Gu, S., Zhang, Y., Qiang, Y., Zhao, L., Synthesis of Cu2ZnSnS4 Nanoparticles for Applications as Counter Electrodes of CdS Quantum Dot-Sensitized Solar Cells (2014) J. Electron. Mater., 43, p. 2709; Zhou, B., Xia, D., Wang, Y., Phase-selective synthesis and formation mechanism of CZTS nanocrystals (2015) RSC Adv., 5; Xia, Y., Chen, Z., Zhang, Z., Fang, X., Liang, G., A nontoxic and low-cost hydrothermal route for synthesis of hierarchical Cu2ZnSnS4 particles (2014) Nano. Res. Lett., 9, p. 208; Shin, S.W., Bae, W.R., Yang, H.S., Hong, C.W., Jung, H.R., Suryawanshi, M.P., Gurav, K.V., Kim, J.H., Size and shape controlled hydrothermal synthesis of kesterite Cu2ZnSnS4 nanocrystals (2014) RSC Adv., 4; Tiong, T., Bell, J., Wang, H., One-step synthesis of high quality kesterite Cu2ZnSnS4 nanocrystals - A hydrothermal approach (2014) Beilstein J. Nanotechnol., 5, p. 438; Podsiadlo, S., Bialoglowski, M., Fadaghi, M., Matyszczak, G., Kardas, K., Dluzewski, P., Data, P., Lapkowski, M., Synthesis of kesterite nanopowders with bandgap tuning ligands (2015) Cryst. Res. Technol., 50, p. 743; Muhunthan, N., Singh, O.P., Thakur, M.K., Karthikeyan, P., Singh, D., Saravanan, M., Singh, V.N., Interfacial Properties of CZTS Thin Film Solar Cell (2014) J. Sol. Energ., 2014; Schaefer, W., Nitsche, R., Tetrahedral Quaternary Chalcogenides of the Type Cu2-II-IV-S4(Se4) (1974) Mater. Res. Bull., 9, p. 645; Scherrer, P., Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen (1918) Nachr. Ges. Wiss. Göttingen, 26, p. 98; Tauc, J., Grigorovici, R., Vancu, A., Optical Properties and Electronic Structure of Amorphous Germanium (1966) Phys. Status Solidi B, 15, p. 627; Swami, S.K., Chaturvedi, N., Kumar, A., Chander, N., Dutta, V., Kumar, D.K., Ivaturi, A., Upadhyayab, H.M., Spray deposited copper zinc tin sulphide (Cu2ZnSnS4) film as a counter electrode in dye sensitized solar cells (2014) Phys. Chem. Chem. Phys., 16; Schorr, S., The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study (2011) Sol. Energy Mater. Sol. Cells, 95, p. 1482; Bacewicz, R., Antonowicz, J., Podsiadlo, S., Schorr, S., Local structure in Cu2ZnSnS4 studied by the XAFS method (2014) Solid State Commun., 177, p. 54; Mkawi, E.M., Ibrahim, K., Ali, M.K.M., Farrukh, M.A., Mohamed, A.S., Allam, N.K., Effect of complexing agents on the electrodeposition of Cu-Zn-Sn metal precursors and corresponding Cu2ZnSnS4-based solar cells (2014) J. Electroanal. Chem., 735, p. 129; Li, W., Haldar, P., Supportless PdFe nanorods as highly active electrocatalyst for proton exchange membrane fuel cell (2009) Electrochem. Commun., 11, p. 1195; López-Marino, S., Sánchez, Y., Placidi, M., Fairbrother, A., Espindola-Rodríguez, M., Fontané, X., Izquierdo-Roca, V., Saucedo, E., ZnSe Etching of Zn-Rich Cu2ZnSnSe4: An Oxidation Route for Improved Solar-Cell Efficiency (2013) Chem. Eur. J., 19; Gajda, T., Sipos, P., Gamsjager, H., The standard electrode potential of the Sn4+/Sn2+ couple revisited (2009) Chem. Month., 140, p. 1293; Tinker, L.A., Bard, A.J., Electrochemistry in liquid sulfur dioxide. 1. Oxidation of thianthrene, phenothiazine, and 9,10-diphenylanthracene (1979) J. Am. Chem. Soc., 101, p. 2316; Trasatti, S., The absolute electrode potential: An explanatory note (1986) Pure Appl. Chem., 58, p. 955; Cardona, C.M., Li, W., Kaifer, A.E., Stockdale, D., Bazan, G.C., Guillermo, C., Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications (2011) Adv. Mater., 23, p. 2367; Data, P., Pander, P., Lapkowski, M., Swist, A., Soloducho, J., Reghu, R.R., Grazulevicius, J.V., Unusual properties of electropolymerized 2,7- and 3,6-carbazole derivatives (2014) Electrochim. Acta, 128, p. 430; Bredas, J.-L., Mind the gap (2014) Mater. Horiz., 1, p. 17; Arul, N.S., Yun, D.Y., Lee, D.U., Kim, T.W., Strong quantum confinement effects in kesterite Cu2ZnSnS4 nanospheres for organic optoelectronic cells (2013) Nanoscale, 5}, correspondence_address1={Data, P.; Physics Department, Durham University, South Road, United Kingdom; email: Przemyslaw.Data@dur.ac.uk}, publisher={Elsevier Ltd}, issn={00134686}, coden={ELCAA}, language={English}, abbrev_source_title={Electrochim Acta}, document_type={Article}, source={Scopus},