Prof. Przemyslaw Data
Professor @ Silesian University of Technology
Home
Publications
Research
Team
Contact
Download CV
The role of local triplet excited states and D-A relative orientation in thermally activated delayed fluorescence: Photophysics and devices
Publications
Year
2016
Type(s)
Journal Article
Author(s)
Dias, F.B. and Santos, J. and Graves, D.R. and Data, P. and Nobuyasu, R.S. and Fox, M.A. and Batsanov, A.S. and Palmeira, T. and Berberan-Santos, M.N. and Bryce, M.R. and Monkman, A.P.
Source
Advanced Science, 3(12), 2016
Url
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85006345830&doi=10.1002%2fadvs.201600080&partnerID=40&md5=336600aa9cf1e800e7cc3ea3d1866115
BibTeX
BibTeX
BibTeX
@ARTICLE{Dias2016, author={Dias, F.B. and Santos, J. and Graves, D.R. and Data, P. and Nobuyasu, R.S. and Fox, M.A. and Batsanov, A.S. and Palmeira, T. and Berberan-Santos, M.N. and Bryce, M.R. and Monkman, A.P.}, title={The role of local triplet excited states and D-A relative orientation in thermally activated delayed fluorescence: Photophysics and devices}, journal={Advanced Science}, year={2016}, volume={3}, number={12}, doi={10.1002/advs.201600080}, art_number={1600080}, note={cited By 163}, url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85006345830&doi=10.1002%2fadvs.201600080&partnerID=40&md5=336600aa9cf1e800e7cc3ea3d1866115}, affiliation={Physics Department, Durham University, South Road, Durham, DH1 3LE, United Kingdom; IMDEA Nanociencia, C/Faraday, 9 Campus Universitario de Cantoblanco, Madrid, 28049, Spain; Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, Gliwice, 44-100, Poland; Chemistry Department, Durham University, South Road, Durham, DH1 3LE, United Kingdom; Centro de Quimica-Fisica Molecular, Instituto Superior Tecnico, Lisboa, 1049-001, Portugal}, abstract={Here, a comprehensive photophysical investigation of a the emitter molecule DPTZ-DBTO2, showing thermally activated delayed fluorescence (TADF), with near-orthogonal electron donor (D) and acceptor (A) units is reported. It is shown that DPTZ-DBTO2 has minimal singlet–triplet energy splitting due to its near-rigid molecular geometry. However, the electronic coupling between the local triplet (3LE) and the charge transfer states, singlet and triplet, (1CT, 3CT), and the effect of dynamic rocking of the D–A units about the orthogonal geometry are crucial for efficient TADF to be achieved. In solvents with low polarity, the guest emissive singlet 1CT state couples directly to the near-degenerate 3LE, efficiently harvesting the triplet states by a spin orbit coupling charge transfer mechanism (SOCT). However, in solvents with higher polarity the emissive CT state in DPTZ-DBTO2 shifts below (the static) 3LE, leading to decreased TADF efficiencies. The relatively large energy difference between the 1CT and 3LE states and the extremely low efficiency of the 1CT to 3CT hyperfine coupling is responsible for the reduction in TADF efficiency. Both the electronic coupling between 1CT and 3LE, and the (dynamic) orientation of the D–A units are thus critical elements that dictate reverse intersystem crossing processes and thus high efficiency in TADF. © 2016 The Authors.}, funding_details={Engineering and Physical Sciences Research CouncilEngineering and Physical Sciences Research Council, EPSRC, EP/L02621X/1}, funding_details={BEX9474-13-7}, funding_text 1={P. Data acknowledges support from the Mobility Plus project financed by the Polish Ministry of Science and Higher Education. D. Graves thanks the OEM group for funding his M.Sc. R. S. Nobuyasu acknowledges the financial support from CAPES Foundation, Ministry of Education-Brazil (Grant No. BEX9474-13-7). The authors thank EPSRC for funding, grant EP/L02621X/1. The authors thank Prof. Peter Hore, Department of Chemistry, University of Oxford for fruitful discussions.}, references={Zhang, Q., Huang, S., Nomura, H., Tanaka, H., Adachi, C., (2014) Nat. Photonics, 8, p. 326; Uoyama, H., Goushi, K., Shizu, K., Nomura, H., Adachi, C., (2012) Nature, 492, p. 234; Wu, S., Aonuma, M., Zhang, Q., Huang, S., Nakagawa, T., Kuwabara, K., Adachi, C., (2014) J. Mater. Chem. C, 2, p. 421; Im, Y., Lee, J.Y., (2014) Chem. Mater, 26, p. 1413; Mehes, G., Nomura, H., Zhang, Q., Nakagawa, T., Adachi, C., (2012) Angew. Chem, 124, p. 11473; Dias, F.B., Bourdakos, K.N., Jankus, V., Moss, K.C., Kamtekar, K.T., Bhalla, V., Santos, J., Monkman, A.P., (2013) Adv. Mater, 25, p. 3707; Wang, H., Xie, L., Peng, Q., Meng, L., Wang, Y., Yi, Y., Wang, P., (2014) Adv. Mater, 26, p. 5198; Berberan-Santos, M.N., Garcia, J.M.M., Am, J., (1996) Chem. Soc, 118, p. 9391; Baleizao, C., Berberan-Santos, M.N., (2007) J. Chem. Phys, 126. , 204510; Tanaka, H., Shizu, K., Miyazaki, H., Adachi, C., (2012) Chem. Commun, 48, p. 11392; Tao, Y., Yuan, K., Chen, T., Xu, P., Li, H., Chen, R., Zheng, C., Huang, W., (2014) Adv. Mater, 26, p. 7931; Jankus, V., Data, P., Graves, D., McGuiness, C., Santos, J., Bryce, M.R., Dias, F.B., Monkman, A.P., (2014) Adv. Funct. Mater, 24, p. 6178; Nobuyasu, R.S., Ren, Z., Griffiths, G., Batsanov, A.S., Data, P., Yan, S., Monkman, A.P., Dias, F.B., (2016) Adv. Opt. Mater, 4, p. 597; Ward, J.S., Nobuyasu, R.S., Batsanov, A.S., Data, P., Monkman, A.P., Dias, F.B., Bryce, M.R., (2016) Chem. Commun, 52, p. 2612; Chen, X.S., Zhang, J., Fan, A., Ren, J., (2015) Phys. Chem. C, 119, p. 9728; Marion, C.M., (2016) J. Phys. Chem. C, 120, p. 3715; Gan, S., Luo, W., He, B., Chen, L., Nie, H., Hu, R., Qin, A., Tang, B.Z., (2016) J. Mater. Chem, 4, p. 3705; Ghoneim, N., Suppan, P., (1993) Pure Appl. Chem, 65, p. 1739; Li, J., Qian, Y., Xie, L., Yi, Y., Li, W., Huang, W., (2015) J. Phys. Chem. C, 119, p. 2133; Qian, Y., Cai, M., Zhou, X., Gao, Z., Wang, X., Zhao, Y., Yan, X., Huang, W., (2012) J. Phys. Chem. C, 116, p. 12187; Chaudhuri, D., Sigmund, E., Meyer, A., Rock, L., Klemm, P., Lautenschlager, S., Schmid, A., Lupton, J.M., (2013) Angew. Chem, 125, p. 13691; Gifford, L.A., Miller, J.N., Phillipps, D.L., Burns, D.T., Bridges, J.W., (1975) Anal. Chem, 47, p. 1699; Saucin, M., Van de Vorst, V., (1980) Radiat. Environ. Biophys., 17, p. 159; Lim, B.T., Okajima, S., Chandra, A.K., Lim, E.C., (1981) Chem. Phys. Lett, 79, p. 22; Willigen, H.V., Jones, G., II, Farabat, M.S., (1996) J. Phys. Chem, 100, p. 3312; Dance, Z.E.X., Mickley, S.M., Wilson, T.M., Ricks, A.B., Scott, A.M., Ratner, M.A., Wasielewski, M.R., Phys, J., (2008) Chem. A, 112, p. 4194; Scott, A.M., Wasielewski, M.R., Am, J., (2011) Chem. Soc, 133, p. 3005; Ogiwara, T., Wakukawa, Y., Ikoma, T., Phys, J., (2015) Chem. A, 119, p. 3415; Morteani, A.C., Dhoot, A.S., Kim, J., Silva, C., Greenham, N.C., Murphy, C., Moons, E., Friend, R.H., (2003) Adv. Mater, 15, p. 1708; Li, J., Nakagawa, T., Macdonald, J., Zhang, Q., Nomura, H., Miyazaki, H., Adachi, C., (2013) Adv. Mater, 25, p. 3319; Tanaka, H., Shizu, K., Nakanotani, H., Adachi, C., (2013) Chem. Mater, 25, p. 3766; Tanaka, H., Shizu, K., Miyazakia, H., Adachi, C., (2012) Chem. Commun, 48, p. 11392; Sato, K., Shizu, K., Yoshimura, K., Kawada, A., Miyazaki, H., Adachi, C., (2013) Phys. Rev. Lett, 110. , 247401; Lee, S.Y., Yasuda, T., Yang, Y.S., Zhang, Q., Adachi, C., (2014) Angew. Chem, 126, p. 6520; Rothe, C., Monkman, A.P., (2003) Phys. Rev. B, 68. , 075208}, correspondence_address1={Dias, F.B.; Physics Department, Durham University, South Road, United Kingdom; email: f.m.b.dias@durham.ac.uk}, publisher={Wiley-VCH Verlag}, issn={21983844}, language={English}, abbrev_source_title={Adv. Sci.}, document_type={Article}, source={Scopus},