Prof. Przemyslaw Data
Professor @ Silesian University of Technology
Home
Publications
Research
Team
Contact
Download CV
Thermally Activated Delayed Fluorescence Mediated through the Upper Triplet State Manifold in Non-Charge-Transfer Star-Shaped Triphenylamine-Carbazole Molecules
Publications
Year
2018
Type(s)
Journal Article
Author(s)
Pander, P. and Motyka, R. and Zassowski, P. and Etherington, M.K. and Varsano, D. and Da Silva, T.J. and Caldas, M.J. and Data, P. and Monkman, A.P.
Source
Journal of Physical Chemistry C, 122(42): 23934—23942, 2018
Url
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054975572&doi=10.1021%2facs.jpcc.8b07610&partnerID=40&md5=27781a28c4a5f265be779cb23eb38875
BibTeX
BibTeX
BibTeX
@ARTICLE{Pander201823934, author={Pander, P. and Motyka, R. and Zassowski, P. and Etherington, M.K. and Varsano, D. and Da Silva, T.J. and Caldas, M.J. and Data, P. and Monkman, A.P.}, title={Thermally Activated Delayed Fluorescence Mediated through the Upper Triplet State Manifold in Non-Charge-Transfer Star-Shaped Triphenylamine-Carbazole Molecules}, journal={Journal of Physical Chemistry C}, year={2018}, volume={122}, number={42}, pages={23934-23942}, doi={10.1021/acs.jpcc.8b07610}, note={cited By 4}, url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054975572&doi=10.1021%2facs.jpcc.8b07610&partnerID=40&md5=27781a28c4a5f265be779cb23eb38875}, affiliation={Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom; Faculty of Chemistry, Silesian University of Technology, Ks. M. Strzody 9, Gliwice, 44-100, Poland; S3 Center, CNR Institute of Nanoscience, Modena, 41125, Italy; Institute of Physics, University of São Paulo, São Paulo, 05508-090, Brazil; Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze, 41-819, Poland}, abstract={Thermally activated delayed fluorescence has been found in a group of tricarbazolylamines that are purely electron-donating, non-charge-transfer (CT) molecules. We show that the reverse intersystem crossing step in these materials is mediated through upper triplet states. Reverse internal conversion is shown to be the thermally activated mechanism behind the triplet harvesting mechanism. The strongly mixed n-π∗/ π- π∗ character of the lowest energy optical transitions retains high oscillator strength and gives rise to high φPL. Organic light-emitting diode devices using these materials were fabricated to show very narrow (full width at half-maximum = 38-41 nm) electroluminescence spectra, clearly demonstrating the excitonic nature of the excited states. This new combination of physicochemical properties of a non-CT molecule yields thermally activated delayed fluorescence, but via a different, physical mechanism, reverse internal conversion delayed fluorescence. © 2018 American Chemical Society.}, keywords={Charge transfer; Molecules; Organic light emitting diodes (OLED); Quantum theory, Delayed fluorescence; Electroluminescence spectra; Inter-system crossings; Internal conversions; Oscillator strengths; Physicochemical property; Thermally activated delayed fluorescences; Thermally activated mechanisms, Fluorescence}, funding_details={Conselho Nacional de Desenvolvimento CientÃfico e TecnológicoConselho Nacional de Desenvolvimento CientÃfico e Tecnológico, CNPq}, funding_details={Narodowym Centrum NaukiNarodowym Centrum Nauki, NCN}, funding_details={Horizon 2020Horizon 2020}, funding_details={H2020-MSCA-IF-2014/659288, 674990, 641725}, funding_details={European CommissionEuropean Commission, EC, 676598}, funding_details={Partnership for Advanced Computing in Europe AISBLPartnership for Advanced Computing in Europe AISBL, PRACE}, funding_text 1={This work was funded in part by a research grant no. 2012/05/ B/ST5/00745 from National Science Centre, Poland. P.P. acknowledges the EU’s Horizon 2020 for funding the EXCILIGHT project under grant agreement no. 674990. P.D. acknowledges the EU’s Horizon 2020 for funding the H2020-MSCA-IF-2014/659288 project “TADFORCE”. M.K.E. acknowledges the EU’s Horizon 2020 for funding the PHEBE project under grant agreement no. 641725. M.J.C. acknowledges support from Brazilian agency CNPq. M.J.C. and T.J.S. acknowledge partial support from Brazilian Ministry of Science and Technology grant INCT-INEO, and University of Saõ Paulo research grant NAP-NN. D.V. acknowledges partial support from the EU Centre of Excellence “MaX-Materials Design at the Exascale” (H2020-EINFRA-2015-1 Grant No. 676598) and PRACE for awarding access to resource Marconi based in Italy at CINECA.}, references={Endo, A., Ogasawara, M., Takahashi, A., Yokoyama, D., Kato, Y., Adachi, C., Thermally Activated Delayed Fluorescence from Sn4+-Porphyrin Complexes and Their Application to Organic Light Emitting Diodes - A Novel Mechanism for Electroluminescence (2009) Adv. Mater., 21, pp. 4802-4806; Tao, Y., Yuan, K., Chen, T., Xu, P., Li, H., Chen, R., Zheng, C., Huang, W., Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics (2014) Adv. Mater., 26, pp. 7931-7958; Nasu, K., Nakagawa, T., Nomura, H., Lin, C.-J., Cheng, C.-H., Tseng, M.-R., Yasuda, T., Adachi, C., A Highly Luminescent Spiro-Anthracenone-Based Organic Light-Emitting Diode Exhibiting Thermally Activated Delayed Fluorescence (2013) Chem. Commun., 49, p. 10385; Dias, F.B., Bourdakos, K.N., Jankus, V., Moss, K.C., Kamtekar, K.T., Bhalla, V., Santos, J., Monkman, A.P., Triplet Harvesting with 100% Efficiency by Way of Thermally Activated Delayed Fluorescence in Charge Transfer OLED Emitters (2013) Adv. Mater., 25, pp. 3707-3714; Uoyama, H., Goushi, K., Shizu, K., Nomura, H., Adachi, C., Highly Efficient Organic Light-Emitting Diodes from Delayed Fluorescence (2012) Nature, 492, pp. 234-238; Lee, D.R., Kim, M., Jeon, S.K., Hwang, S., Lee, C.W., Lee, J.Y., Design Strategy for 25% External Quantum Efficiency in Green and Blue Thermally Activated Delayed Fluorescent Devices (2015) Adv. Mater., 27, pp. 5861-5867; Cho, Y.J., Chin, B.D., Jeon, S.K., Lee, J.Y., 20% External Quantum Efficiency in Solution-Processed Blue Thermally Activated Delayed Fluorescent Devices (2015) Adv. Funct. Mater., 25, pp. 6786-6792; Higginbotham, H., Karon, K., Ledwon, P., Data, P., Carbazoles in Optoelectronic Applications (2017) Display Imaging, 2, pp. 207-216; Jankus, V., Data, P., Graves, D., McGuinness, C., Santos, J., Bryce, M.R., Dias, F.B., Monkman, A.P., Highly Efficient TADF OLEDs: How the Emitter-Host Interaction Controls Both the Excited State Species and Electrical Properties of the Devices to Achieve Near 100% Triplet Harvesting and High Efficiency (2014) Adv. Funct. Mater., 24, pp. 6178-6186; Data, P., Kurowska, A., Pluczyk, S., Zassowski, P., Pander, P., Jedrysiak, R., Czwartosz, M., Monkman, A.P., Exciplex Enhancement as a Tool to Increase OLED Device Efficiency (2016) J. Phys. Chem. C, 120, pp. 2070-2078; Data, P., Motyka, R., Lapkowski, M., Suwinski, J., Jursenas, S., Kreiza, G., Miasojedovas, A., Monkman, A.P., Efficient P-Phenylene Based OLEDs with Mixed Interfacial Exciplex Emission (2015) Electrochim. Acta, 182, pp. 524-528; Zhang, T., Chu, B., Li, W., Su, Z., Peng, Q.M., Zhao, B., Luo, Y., Wang, J., Efficient Triplet Application in Exciplex Delayed-Fluorescence OLEDs Using a Reverse Intersystem Crossing Mechanism Based on a Δ e S-T of around Zero (2014) ACS Appl. Mater. Interfaces, 6, pp. 11907-11914; Lee, I.H., Song, W., Lee, J.Y., Aggregation-Induced Emission Type Thermally Activated Delayed Fluorescent Materials for High Efficiency in Non-Doped Organic Light-Emitting Diodes (2016) Org. Electron., 29, pp. 22-26; Nikolaenko, A.E., Cass, M., Bourcet, F., Mohamad, D., Roberts, M., Thermally Activated Delayed Fluorescence in Polymers: A New Route toward Highly Efficient Solution Processable OLEDs (2015) Adv. Mater., 27, pp. 7236-7240; Nobuyasu, R.S., Ren, Z., Griffiths, G.C., Batsanov, A.S., Data, P., Yan, S., Monkman, A.P., Dias, F.B., Rational Design of TADF Polymers Using a Donor-Acceptor Monomer with Enhanced TADF Efficiency Induced by the Energy Alignment of Charge Transfer and Local Triplet Excited States (2016) Adv. Opt. Mater., 4, pp. 597-607; Hatakeyama, T., Shiren, K., Nakajima, K., Nomura, S., Nakatsuka, S., Kinoshita, K., Ni, J., Ikuta, T., Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect (2016) Adv. Mater., 28, pp. 2777-2781; Li, J., Zhang, Q., Nomura, H., Miyazaki, H., Adachi, C., Thermally Activated Delayed Fluorescence from 3nπ ∗ to 1nπ ∗ up-Conversion and Its Application to Organic Light-Emitting Diodes (2014) Appl. Phys. Lett., 105, p. 013301; Mamada, M., Inada, K., Komino, T., Potscavage, W.J., Nakanotani, H., Adachi, C., Highly Efficient Thermally Activated Delayed Fluorescence from an Excited-State Intramolecular Proton Transfer System (2017) ACS Cent. Sci., 3, pp. 769-777; Lim, B.T., Okajima, S., Chandra, A.K., Lim, E.C., Radiationless Transitions in Electron Donor-acceptor Complexes: Position-dependent Deuterium Isotope Effects on S1 → S0 Internal Conversion of 1:1 and 2:1 Complexes of Methyl-substituted Benzenes with Tetracyanobenzene (1982) J. Chem. Phys., 77, pp. 3902-3909; Dias, F.B., Santos, J., Graves, D.R., Data, P., Nobuyasu, R.S., Fox, M.A., Batsanov, A.S., Monkman, A.P., The Role of Local Triplet Excited States and D-A Relative Orientation in Thermally Activated Delayed Fluorescence: Photophysics and Devices (2016) Adv. Sci., 3, p. 1600080; Etherington, M.K., Gibson, J., Higginbotham, H.F., Penfold, T.J., Monkman, A.P., Revealing the Spin-vibronic Coupling Mechanism of Thermally Activated Delayed Fluorescence (2016) Nat. Commun., 7, p. 13680; Gibson, J., Monkman, A.P., Penfold, T.J., The Importance of Vibronic Coupling for Efficient Reverse Intersystem Crossing in Thermally Activated Delayed Fluorescence Molecules (2016) ChemPhysChem, 17, pp. 2956-2961; (2017) Samsung Demonstrate A Healthier Bio-Blue OLED Display at SID 2016, , https://www.oled-info.com/samsung-demonstrate-healthier-bio-blue-oled-display-sid-2016, (accessed Nov 1, 2017); Cherpak, V., Stakhira, P., Minaev, B., Baryshnikov, G., Stromylo, E., Helzhynskyy, I., Chapran, M., Grazulevicius, J.V., Mixing of Phosphorescent and Exciplex Emission in Efficient Organic Electroluminescent Devices (2015) ACS Appl. Mater. Interfaces, 7, pp. 1219-1225; Chakravorty, K., Poole, J.A., The Effect of Dissolved Molecular Oxygen on the Fluorescence of 9,10-Diphenylanthracene (1984) J. Photochem., 26, pp. 25-31; Cox, M.E., Dunn, B., Detection of Oxygen by Fluorescence Quenching (1985) Appl. Opt., 24, pp. 2114-2120; Wilkinson, F., McGarvey, D.J., Olea, A.F., Excited Triplet State Interactions with Molecular Oxygen: Influence of Charge Transfer on the Bimolecular Quenchfng Rate Constants and the Yields of Singlet Oxygen (O2,1Δg) for Substituted Naphthalenes in Various Solvents (1994) J. Phys. Chem., 98, pp. 3762-3769; Strohriegl, P., Wagner, D., Schrögel, P., Hoffmann, S.T., Köhler, A., Heinemeyer, U., Münster, I., Adachi, C., Novel Host Materials for Blue Phosphorescent OLEDs (2013) Proceedings of SPIE, p. 882906. , SPIE: Bellingham, United States; Bagnich, S.A., Athanasopoulos, S., Rudnick, A., Schroegel, P., Bauer, I., Greenham, N.C., Strohriegl, P., Köhler, A., Excimer Formation by Steric Twisting in Carbazole and Triphenylamine-Based Host Materials (2015) J. Phys. Chem. C, 119, pp. 2380-2387; Pander, P.H., Swist, A., Soloducho, J., Dias, F., Data, P., Thermally Activated Delayed Fluorescence with Narrow Emission Spectrum and Organic Room Temperature Phosphorescence by Controlling Spin-Orbit Coupling and Phosphorescence Lifetime of Metal-Free Organic Molecules (2018) J. Mater. Chem. C, 6, pp. 5434-5443; Jankus, V., Chiang, C.J., Dias, F., Monkman, A.P., Deep Blue Exciplex Organic Light-Emitting Diodes with Enhanced Efficiency; P-Type or E-Type Triplet Conversion to Singlet Excitons? (2013) Adv. Mater., 25, pp. 1455-1459; Data, P., Pander, P., Okazaki, M., Takeda, Y., Minakata, S., Monkman, A.P., Dibenzo[a,j]Phenazine-Cored Donor-Acceptor-Donor Compounds as Green-to-Red/NIR Thermally Activated Delayed Fluorescence Organic Light Emitters (2016) Angew. Chem., Int. Ed., 55, pp. 5739-5744; Dos Santos, P.L., Dias, F.B., Monkman, A.P., Investigation of the Mechanisms Giving Rise to TADF in Exciplex States (2016) J. Phys. Chem. C, 120, pp. 18259-18267; Dos Santos, P.L., Ward, J.S., Bryce, M.R., Monkman, A.P., Using Guest-Host Interactions to Optimize the Efficiency of TADF OLEDs (2016) J. Phys. Chem. Lett., 7, pp. 3341-3346; Henry, B.R., Kasha, M., Triplet-Triplet Absorption Studies on Aromatic and Heterocyclic Molecules at 77 K (1967) J. Chem. Phys., 47, pp. 3319-3326; Huang, S., Zhang, Q., Shiota, Y., Nakagawa, T., Kuwabara, K., Yoshizawa, K., Adachi, C., Computational Prediction for Singlet- and Triplet-Transition Energies of Charge-Transfer Compounds (2013) J. Chem. Theory Comput., 9, pp. 3872-3877; Dai, D.C., Monkman, A.P., Femtosecond Hot-Exciton Emission in a Ladder-Type π-Conjugated Rigid-Polymer Nanowire (2013) Phys. Rev. B, 87, p. 45308; Ziegenbein, C.T., Fröbel, S., Glöß, M., Nobuyasu, R.S., Data, P., Monkman, A., Gilch, P., Triplet Harvesting with a Simple Aromatic Carbonyl (2017) ChemPhysChem, 18, p. 2305; Northey, T., Penfold, T.J., The Intersystem Crossing Mechanism of an Ultrapure Blue Organoboron Emitter (2018) Org. Electron., 59, pp. 45-48; Li, J., Nomura, H., Miyazaki, H., Adachi, C., Highly Efficient Exciplex Organic Light-Emitting Diodes Incorporating a Heptazine Derivative as an Electron Acceptor (2014) Chem. Commun., 50, pp. 6174-6176}, correspondence_address1={Data, P.; Department of Physics, Durham University, South Road, United Kingdom; email: Przemyslaw.Data@durham.ac.uk}, publisher={American Chemical Society}, issn={19327447}, language={English}, abbrev_source_title={J. Phys. Chem. C}, document_type={Article}, source={Scopus},