Prof. Przemyslaw Data
Professor @ Silesian University of Technology
Home
Publications
Research
Team
Contact
Download CV
Thermally Activated Delayed Fluorescent Donor-Acceptor-Donor-Acceptor π-Conjugated Macrocycle for Organic Light-Emitting Diodes
Publications
Year
2020
Type(s)
Journal Article
Author(s)
Izumi, S. and Higginbotham, H.F. and Nyga, A. and Stachelek, P. and Tohnai, N. and Silva, P.D. and Data, P. and Takeda, Y. and Minakata, S.
Source
Journal of the American Chemical Society, 142(3): 1482—1491, 2020
Url
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078534558&doi=10.1021%2fjacs.9b11578&partnerID=40&md5=393967e1f5763531d1640a017c409af9
BibTeX
BibTeX
BibTeX
@ARTICLE{Izumi20201482, author={Izumi, S. and Higginbotham, H.F. and Nyga, A. and Stachelek, P. and Tohnai, N. and Silva, P.D. and Data, P. and Takeda, Y. and Minakata, S.}, title={Thermally Activated Delayed Fluorescent Donor-Acceptor-Donor-Acceptor π-Conjugated Macrocycle for Organic Light-Emitting Diodes}, journal={Journal of the American Chemical Society}, year={2020}, volume={142}, number={3}, pages={1482-1491}, doi={10.1021/jacs.9b11578}, note={cited By 0}, url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078534558&doi=10.1021%2fjacs.9b11578&partnerID=40&md5=393967e1f5763531d1640a017c409af9}, affiliation={Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan; Department of Material and Life Science, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan; School of Chemistry, Monash University, Clayton, VIC 3800, Australia; Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, Gliwice, 44-100, Poland; Physics Department, Durham University, South Road, Durham, DH1 3LE, United Kingdom; Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej 301, Kongens Lyngby, 2800, Denmark; Center of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze, 41-819, Poland}, abstract={A new class of thermally activated delayed fluorescent donor-acceptor-donor-acceptor (D-A-D-A) π-conjugated macrocycle comprised of two U-shaped electron-acceptors (dibenzo[a,j]phenazine) and two electron-donors (N,N′-diphenyl-p-phenyelendiamine) has been rationally designed and successfully synthesized. The macrocyclic compound displayed polymorphs-dependent conformations and emission properties. Comparative studies on physicochemical properties of the macrocycle with a linear surrogate have revealed significant effects of the structural cyclization of the D-A-repeating unit, including more efficient thermally activated delayed fluorescence (TADF). Furthermore, an organic light-emitting diode (OLED) device fabricated with the macrocycle compound as the emitter has achieved a high external quantum efficiency (EQE) up to 11.6%, far exceeding the theoretical maximum (5%) of conventional fluorescent emitters and that with linear analogue (6.9%). Copyright © 2020 American Chemical Society.}, keywords={Electronic equipment; Fluorescence; Physicochemical properties, Comparative studies; Donor acceptor donors; Emission properties; External quantum efficiency; Fluorescent emitters; Macrocyclic compounds; Thermally activated; Thermally activated delayed fluorescences, Organic light emitting diodes (OLED), dibenzo[a,j]phenazine; macrocyclic compound; n,n' diphenyl 4 phenyelendiamine; unclassified drug, absorption; absorption spectroscopy; Article; comparative study; conformation; controlled study; cyclization; density functional theory; external quantum efficiency; fluorescence; macrocyclization; photoluminescence; photoluminescence spectra; physical chemistry; quantum mechanics; single crystal X ray crystallography; spectroscopy; synthesis; thermally activated delayed fluorescence; time resolved spectroscopy; ultraviolet visible absorption spectroscopy; ultraviolet visible spectroscopy; X ray crystallography}, funding_details={Japan Society for the Promotion of ScienceJapan Society for the Promotion of Science, JSPS, JP17H05155}, funding_details={European CommissionEuropean Commission, EC}, funding_details={Fundacja na rzecz Nauki PolskiejFundacja na rzecz Nauki Polskiej, FNP}, funding_details={European Regional Development FundEuropean Regional Development Fund, FEDER, TEAM 2017-4/32 POIR.04.04.00-00-4668/17-00}, funding_details={Horizon 2020Horizon 2020, 778158}, funding_text 1={This research was supported by the Grant-in-Aid for Scientific Research on Innovative Areas “π-System Figuration: Control of Electron and Structural Dynamism for Innovative Functions” (JSPS KAKENHI Grant no. JP17H05155 to Y.T.), “Aquatic Functional Materials: Creation of New Materials Science for Environment-Friendly and Active Functions” (JSPS KAKENHI Grant no. JP19H05716 to Y.T.), and the Continuation Grants for Young Researchers from the Asahi Glass Foundation (to Y.T.). P.D. and A.N. acknowledge the kind support received from the First Team program of the Foundation for Polish Science cofinanced by the European Union under the European Regional Development Fund (project number: First TEAM 2017-4/32 POIR.04.04.00-00-4668/17-00). Y.T. and P.D. acknowledge the EU’s Horizon 2020 for funding the OCTA project under grant agreement no. 778158. We acknowledge the experimental support of Professors Kei Tsujimoto (Osaka University) and Hiroshi Uyama (Osaka University) for the DSC measurement.}, references={Rochat, S., Swager, T.M., Conjugated Amplifying Polymers for Optical Sensing Applications (2013) ACS Appl. Mater. Interfaces, 5, pp. 4488-4502; Baek, P., Voorhaar, L., Barker, D., Travas-Sejdic, J., Molecular Approach to Conjugated Polymers with Biomimetic Properties (2018) Acc. Chem. Res., 51, pp. 1581-1589; Wu, W., Bazan, G.C., Liu, B., Conjugated-Polymer-Amplified Sensing, Imaging, and Therapy (2017) Chem., 2, pp. 760-790; Horowitz, G., Organic Field-Effect Transistors (1998) Adv. Mater., 10, pp. 365-377; Wang, C., Dong, H., Hu, W., Liu, Y., Zhu, D., Semiconducting π-Conjugated Systems in Field-Effect Transistors: A Material Odyssey of Organic Electronics (2012) Chem. Rev., 112, pp. 2208-2267; Mei, J., Diao, Y., Appleton, A.L., Fang, L., Bao, Z., Integrated Materials Design of Organic Semiconductors for Field- Effect Transistors (2013) J. Am. Chem. Soc., 135, pp. 6724-6746; Osaka, I., Takimiya, K., Naphthobischalcogenadiazole Conjugated Polymers: Emerging Materials for Organic Electronics (2017) Adv. Mater., 29, p. 1605218; Günes, S., Neugebauer, H., Sariciftci, N.S., Conjugated Polymer-Based Organic Solar Cells (2007) Chem. Rev., 107, pp. 1324-1338; Cheng, Y.-J., Yang, S.-H., Hsu, C.-S., Synthesis of Conjugated Polymers for Organic Solar Cell Applications (2009) Chem. Rev., 109, pp. 5868-5923; Lin, Y., Li, Y., Zhan, X., Small Molecule Semiconductors for High-Efficiency Organic Photovoltaics (2012) Chem. Soc. Rev., 41, pp. 4245-4272; Dou, L., You, J., Hong, Z., Xu, Z., Li, G., Street, R.A., Yang, Y., 25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research (2013) Adv. Mater., 25, pp. 6642-6671; Fu, H., Wang, Z., Sun, Y., Polymer Donors for High-Performance Non-Fullerene Organic Solar Cells (2019) Angew. Chem., Int. Ed., 58, pp. 4442-4453; Kraft, A., Grimsdale, A.C., Holmes, A.B., Electroluminescent Conjugated Polymers - Seeing Polymers in a New Light (1998) Angew. Chem., Int. Ed., 37, pp. 402-428; Mitschkea, U., Bäuerle, P., The Electroluminescence of Organic Materials (2000) J. Mater. Chem., 10, pp. 1471-1507; Müllen, K., Scherf, U., (2006) Organic Light Emitting Devices: Synthesis, Properties and Applications, , Eds. Wiley-VCH: Weinheim; Kawase, T., Kurata, H., Ball-, Bowl-, and Belt-Shaped Conjugated Systems and Their Complexing Abilities: Exploration of the Concave-Convex π-πInteraction (2006) Chem. Rev., 106, pp. 5250-5273; Tahara, K., Tobe, Y., Molecular Loops and Belts (2006) Chem. Rev., 106, pp. 5274-5290; Höger, S.J., Highly Efficient Methods for the Preparation of Shape-Persistent Macrocyclics (1999) J. Polym. Sci., Part A: Polym. Chem., 37, pp. 2685-2698; Zhang, W., Moore, J.S., Shape-Persistent Macrocycles: Structures and Synthetic Approaches from Arylene and Ethynylene Building Blocks (2006) Angew. Chem., Int. Ed., 45, pp. 4416-4439; Diederich, F., Kivala, M., All-Carbon Scaffolds by Rational Design (2010) Adv. Mater., 22, pp. 803-812; Iyoda, M., Yamalawa, J., Rahman, M.J., Conjugated Macrocycles: Concepts and Applications (2011) Angew. Chem., Int. Ed., 50, pp. 10522-10533; Iyoda, M., Shimizu, H., Multifunctional 1-Expanded Oligothiophene Macrocycles (2015) Chem. Soc. Rev., 44, pp. 6411-6424; Smith, M.K., Miljanić, O.Š., Arylene Ethynylene Macrocycles: From Molecular Hosts to Components of High-Performance Supramolecular Architectures (2015) Org. Biomol. Chem., 13, pp. 7841-7845; Lewis, S.E., Cycloparaphenylenes and Related Nanohoops (2015) Chem. Soc. Rev., 44, pp. 2221-2304; Ball, M., Nuckolls, C., Stepping into the Light: Conjugated Macrocycles with Donor-Acceptor Motifs (2015) ACS Cent. Sci., 1, pp. 416-417; Ball, M., Zhang, B., Zhong, Y., Fowler, B., Xiao, S., Ng, F., Steigerwald, M., Nuckolls, C., Conjugated Macrocycles in Organic Electronics (2019) Acc. Chem. Res., 52, pp. 1068-1078; Chen, P., Lalancette, R.A., Jäkle, F., K-Expanded Borazine: An Ambipolar Conjugated B-N Macrocycle (2012) Angew. Chem., Int. Ed., 51, pp. 7994-7998; Chen, P., Yin, X., Baser-Kirazli, N., Jäkle, F., Versatile Design Principles for Facile Access to Unstrained Conjugated Organoborane Macrocycles (2015) Angew. Chem., Int. Ed., 54, pp. 10768-10772; Darzi, E.R., Hirst, E.S., Weber, C.D., Zakharov, L.N., Lonergan, M.C., Jasti, R., Synthesis, Properties, and Design Principles of Donor-Acceptor Nanohoops (2015) ACS Cent. Sci., 1, pp. 335-342; Kuwabara, T., Orii, J., Segawa, Y., Itami, K., Curved Oligophenylenes as Donors in Shape-Persistent Donor-Acceptor Macrocycles with Solvatofluorochromic Properties (2015) Angew. Chem., Int. Ed., 54, pp. 9646-9649; Ball, M., Fowler, B., Li, P., Joyce, L.A., Li, F., Liu, T., Paley, D., Nuckolls, C., Chiral Conjugated Corrals (2015) J. Am. Chem. Soc., 35, pp. 9982-9987; Ball, M., Zhong, Y., Fowler, B., Zhang, B., Li, P., Etkin, G., Paley, D.W., Nuckolls, C., Macrocyclization in the Design of Organic n-Type Electronic Materials (2016) J. Am. Chem. Soc., 138, pp. 12861-12867; Zhang, B., Trinh, M.T., Fowler, B., Ball, M., Xu, Q., Ng, F., Steigerwald, M.L., Zhong, Y., Rigid, Conjugated Macrocycles for High Performance Organic Photodetectors (2016) J. Am. Chem. Soc., 138, pp. 16426-16431; Zhang, B., Hernández Sánchez, R., Zhong, Y., Ball, M., Terban, M.W., Paley, D., Billinge, S.J.L., Nuckolls, C., Hollow Organic Capsules Assemble into Cellular Semiconductors (2018) Nat. Commun., 9, p. 1957; Ball, M.L., Zhang, B., Xu, Q., Paley, D.W., Ritter, V.C., Ng, F., Steigerwald, M.L., Nuckolls, C., Influence of Molecular Conformation on Electron Transport in Giant, Conjugated Macrocycles (2018) J. Am. Chem. Soc., 140, pp. 10135-10139; Tao, Y., Yuan, K., Chen, T., Xu, P., Li, H., Chen, R., Zheng, C., Huang, W., Thermally Activated Delayed Fluorescence Materials towards the Breakthrough of Organoelectronics (2014) Adv. Mater., 26, pp. 7931-7958; Czerwieniec, R., Leitl, M.J., Homeier, H.H.H., Yersin, H., Cu(I) Complexes - Thermally Activated Delayed Fluorescence. Photophysical Approach and Material Design (2016) Coord. Chem. Rev., 325, pp. 2-28; Dias, F.B., Penfold, T.J., Monkman, A.P., Photophysics of Thermally Activated Delayed Fluorescence Molecule (2017) Methods Appl. Fluoresc., 5, p. 012001; Yang, Z., Mao, Z., Xie, Z., Zhang, Y., Liu, S., Zhao, J., Xu, J., Aldred, M.P., Recent Advances in Organic Thermally Activated Delayed Fluorescence Materials (2017) Chem. Soc. Rev., 46, pp. 915-1016; Wong, M.Y., Zysman-Colman, E., Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes (2017) Adv. Mater., 29, p. 1605444; Sarma, M., Wong, K.-T., Exciplex: An Intermolecular Charge-Transfer Approach for TADF (2018) ACS Appl. Mater. Interfaces, 10, pp. 19279-19304; Chen, X.-K., Kim, D., Brédas, J.-L., Thermally Activated Delayed Fluorescence (TADF) Path toward Efficient Electroluminescence inPurely Organic Materials: Molecular Level Insight (2018) Acc. Chem. Res., 51, pp. 2215-2224; Liu, Y., Li, C., Ren, Z., Yan, S., Bryce, M.R., All-Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes (2018) Nat. Rev. Mater., 3, p. 18020; Data, P., Takeda, Y., Recent Advancements in and the Future of Organic Emitters: TADF- And RTP-Active Multifunctional Organic Materials (2019) Chem. - Asian J., 14, pp. 1613-1636; Endo, A., Ogasawara, M., Takahashi, A., Yokoyama, D., Kato, Y., Adachi, C., Thermally Activated Delayed Fluorescence from Sn4++-Porphyrin Complexes and Their Application to Organic Light-Emitting Diodes - A Novel Mechanism for Electroluminescence (2009) Adv. Mater., 21, pp. 4802-4806; Uchida, N., Sato, T., Kuwabara, J., Nishimura, Y., Kanbara, T., Delayed Fluorescence Behaviors of Aminopyridine Oligomers: Azacalix[ n](2,6)pyridines (n = = 3 and 4) and Their Linear Analog (2014) Chem. Lett., 43, pp. 459-461; Hu, Y., Wang, Z., Jiang, X., Cai, X., Su, S.J., Huang, F., Cao, Y., One-Step Synthesis of Cyclic Compounds towards Easy Room-Temperature Phosphorescence and Deep Blue Thermally Activated Delayed Fluorescence (2018) Chem. Commun., 54, pp. 7850-7853; Adachi, C., Baldo, M.A., Thompson, M.E., Forrest, S.R., Nearly 100% Internal Phosphorescence Efficiency in an Organic Light Emitting Device (2001) J. Appl. Phys., 90, pp. 5048-5051; Takeda, Y., Okazaki, M., Minakata, S., Oxidative Skeletal Rearrangement of 1,1'-Binaphthalene-2,2'-diamines (BINAMs) via C-C Bond Cleavage and Nitrogen Migration: A Versatile Synthesis of U-Shaped Azaacenes (2014) Chem. Commun., 50, pp. 10291-10294; Data, P., Pander, P., Okazaki, M., Takeda, Y., Minakata, S., Monkman, A.P., Dibenzo[ aj]phenazine-Cored Donor-Acceptor-Donor Compounds as Green-to-Red/NIR Thermally Activated Delayed Fluorescence Organic Light Emitters (2016) Angew. Chem., Int. Ed., 55, pp. 5739-5744; Okazaki, M., Takeda, Y., Data, P., Pander, P., Higginbotham, H., Monkman, A.P., Minakata, S., Thermally Activated Delayed Fluorescent Phenothiazine-Dibenzo[ a j]phenazine-Phenothiazine Triads Exhibiting Tricolor-Changing Mechanochromic Luminescence (2017) Chem. Sci., 8, pp. 2677-2686; Data, P., Okazaki, M., Minakata, S., Takeda, Y., Thermally Activated Delayed Fluorescence vs. Room Temperature Phosphorescence by Conformation Control of Organic Single Molecules (2019) J. Mater. Chem. C, 7, pp. 6616-6621; Takeda, Y., Kaihara, T., Okazaki, M., Higginbotham, H., Data, P., Tohnai, N., Minakata, S., Conformationally-Flexible and Moderately Electron-Donating Units-Installed Donor-Acceptor-Donor Triad Enabling Multicolor-Changing Mechanochromic Luminescence, Thermally Activated Delayed Fluorescence, and Room-Temperature Phosphorescence (2018) Chem. Commun., 54, pp. 6847-6850; Martí-Centelles, V., Pandey, M.D., Burguete, M.I., Luis, S.V., Macrocyclization Reactions: The Importance of Conformational, Configurational, and Template-Induced Preorganization (2015) Chem. Rev., 115, pp. 8736-8834; Sobolev, A.N., Belsky, V.K., Romm, I.P., Chernikova, N.Y., Guryanova, E.N., Structural Investigation of the Triaryl Derivatives of the Group v Elements. IX. Structure of Triphenylamine, C18H15N (1985) Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 41, pp. 967-971; Chen, R., Benicewicz, B.C., Preparation and Properties of Poly(methacrylamide)s Containing Oligoaniline Side Chains (2003) Macromolecules, 36, pp. 6333-6339; Eelkema, R., Anderson, L., Synthesis of End-Functionalized Polyanilines (2008) Macromolecules, 41, pp. 9930-9933; Kataoka, N., Shelby, Q., Stambuli, J.P., Hartwig, J.F., Air Stable, Sterically Hindered Ferrocenyl Dialkylphosphines for Palladium-Catalyzed C-C, C-N, and C-O Bond-Forming Cross-Couplings (2002) J. Org. Chem., 67, pp. 5553-5566; Wang, C., Li, Z., Molecular Conformation and Packing: Their Critical Roles in the Emission Performance of Mechanochromic Fluorescence Materials (2017) Mater. Chem. Front., 1, pp. 2174-2194; Yang, T.-F., Chiu, K.Y., Cheng, H.C., Lee, Y.W., Kuo, M.Y., Su, Y.O., Studies on the Structure of N-Phenyl-Substituted Hexaaza[16]paracyclophane: Synthesis, Electrochemical Properties, and Theoretical Calculation (2012) J. Org. Chem., 77, pp. 8627-8633; Kuang, Z., He, G., Song, H., Wang, X., Hu, Z., Sun, H., Wan, Y., Xia, A., Conformational Relaxation and Thermally Activated Delayed Fluorescence in Anthraquinone-Based Intramolecular Charge-Transfer Compound (2018) J. Phys. Chem. C, 122, pp. 3727-3737; Wu, C., Djurovich, P.I., Thompson, M.E., Study of Energy Transfer and Triplet Exciton Diffusion in Hole-Transporting Host Materials (2009) Adv. Funct. Mater., 19, pp. 3157-3164; Yeh, S.J., Tsai, C.Y., Huang, C.-Y., Liou, G.-S., Cheng, S.-H., Electrochemical Characterization of Small Organic Hole-Transport molecules Based on the Triphenylamine Unit (2003) Electrochem. Commun., 5, p. 373; De Silva, P., Kim, C.A., Zhu, T., Voorhis, T.V., Extracting Design Principles for Efficient Thermally Activated Delayed Fluorescence (TADF) from a Simple Four-State Model (2019) Chem. Mater., 31, pp. 6995-7006}, correspondence_address1={Data, P.; Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, Poland; email: przemyslaw.data@polsl.pl}, publisher={American Chemical Society}, issn={00027863}, coden={JACSA}, pubmed_id={31895980}, language={English}, abbrev_source_title={J. Am. Chem. Soc.}, document_type={Article}, source={Scopus},